The economic impact of rheumatic heart disease in developing countries

David A. Watkins, MD
Department of Medicine, University of Washington
Department of Medicine, University of Cape Town

Consortium of Universities for Global Health
27 March 2015
I, David Watkins, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.
Outline

• What is RHD, and why should you care?
• Brief introduction to mortality risk valuation
• Data and methods used in this study
• Results: variations in economic impact of RHD by region and sex
• Take-home points for the NCD community and larger global health community
Background and motivation
What is RHD?

Neglected disease of poverty

Poor sanitation, crowding, malnutrition

Untreated strep throat in children 5-14

Lack of “secondary” prevention w/ penicillin

Early adult mortality, especially during pregnancy

Carapetis 2007
Wealthy countries don’t have RHD*
Why do I study RHD?

• Completely preventable (unlike most NCDs)
• **Litmus test** for chronic health systems
 – Social determinants: sanitation, poverty, crowding
 – Primary care pediatrics (sore throat treatment)
 – Antenatal care (RHD: high risk during pregnancy)
 – Level 1/district services (ultrasound, anticoagulation, etc.)
 – Tertiary cardiology and cardiac surgery capacity
• **Opportunities** for health system strengthening
• **Social justice**: women and children most affected
Objective: estimate the global cost of the preventable (premature) mortality from RHD, comparing across regions

Wait, what? Cost of human life??
How do you put a dollar figure on mortality?
Really, tradeoff between health and wealth

Option A

Annual household income: $53,000
Life expectancy at birth: 54 years

Option B

Annual household income: $16,000
Life expectancy at birth: 79 years

Historically, increases in healthy life expectancy, all else equal, have lead to gains in “real income” (or per capita GDP as a proxy)

Adapted from Nordhaus 2002; Bureau of Labor and Statistics 2015
Methods
Modeling approach, data sources

• Cause-deleted life tables: change in mortality/life expectancy when “preventable” RHD deaths are eliminated (compared to HIC mortality rates)
• Age- and sex-specific estimates of RHD and all-cause mortality & population size (GBD 2013)
• Analysis done at level of 7 World Bank regions
• Practically, assessing an ~72% reduction in RHD mortality (range, 36-86% by age/sex/region)
Economic methods/assumptions

- Used the “full income” method for mortality risk valuation (approach to VLY/VSL used in benefit-cost analysis)
- Calculated avoidable mortality in “standardized mortality units” (SMUs) defined as a 10^{-4} probability of death
- Empirical data on what individuals are willing to pay to avoid an SMU (~1.8% per-capita GDP)
- Aggregated values for all avoidable RHD deaths as reduced mortality (SMUs averted) across ages → stream of life-years over next 20 years
Results
Health impact of avoidable RHD - females

Total deaths averted: 96,600
Health impact of avoidable RHD - males

Total deaths averted: 84,800
Cumulative economic impact

2013 alone: $56 billion
5 years: $278 billion
10 years: $581 billion
15 years: $910 billion
20 years: $1.25 trillion
Variation in costs by region

![Graph showing variation in costs by region](image-url)
Inadequate donor response

$56,000,000,000 annual economic losses

$1,700,000 annual donor funding

3300:1

$5 to treat a case of sore throat

$29,000 lifetime cost of valve surgery

Remenyi et al. 2013, Watkins et al. 2015
Conclusions and final thoughts
1. RHD is a **totally preventable** disease
2. The economic **cost of RHD is tremendous** and justifies a coordinated global investment
3. Addressing RF and RHD is a **matter of health equity** for women and children
4. RHD is a **model** condition for **health system strengthening** around NCDs in Africa and South Asia
Thank you!

Acknowledgements

- Prof Dean Jamison (UW/UCSF): conceptual input
- Dr Greg Roth and Catherine Johnson (UW): GBD data
- Alessandra Daskalakis (RA, Global Heart Network): data collection and entry
- Prof Bongani Mayosi (UCT): RHD expert, mentor

Email: davidaw@uw.edu | david.watkins@uct.ac.za
VSMU (VLY) theory

Estimation of life expectancy at age (a):

\[e(a) = \frac{1}{s(a)} \int_a^\infty s(a) \, da \]

Define a Standardized Mortality Unit (SMU) as a 10^{-4} probability of dying during a given year.

In high-income countries, this has been estimated empirically (Hammitt and Robinson, 2011) as being “worth” 1.8% of per capita GDP to a 35 year-old.

The value of an SMU at age (a) is then,

\[VSMU(a) = \frac{e(a)}{e(35)} VSMU(35) \]

And the aggregate value of all SMUs, leading to a change in \(e(0) \) from \(e_i \) to \(e_j \), is:

\[V(e_i, e_j, y) = 0.018 \int_0^\infty n(a) \triangle SMU(e_i, e_j) \frac{e(a)}{e(35)} \, da \]

Adapted from Jamison et al., 2013
Cause-deleted life table theory

Assume mortality from cause i is proportional to total mortality at any given age:

$$\mu^i(a) = R^i \cdot \mu(a)$$

$$R^i = \frac{n D_x^i}{n D_x} \quad \Rightarrow \quad ^*P^i_x = \left[n P_x \right]^{n D_x^i}$$

Proof:

$$^*P^i_x = e^{-\int_x^{x+n} \mu^i(a) da} = e^{-\int_x^{x+n} R^i \cdot \mu(a) da}$$

$$^*P^i_x = e^{-R^i \cdot \int_x^{x+n} \mu(a) da} = \left[e^{-\int_x^{x+n} \mu(a) da} \right]^{R^i} = \left[n P_x \right]^{R^i}$$

Courtesy of Haidong Wang