Zoonoses diseases

Laura Christie, MD
Carol Glaser, MD, DVM
California Department of Public Health
Viral and Rickettsial Disease Laboratory
Richmond, CA, USA

Prepared as part of an education project of the Global Health Education Consortium and collaborating partners
Zoonoses

- Diseases transmitted from animals to humans
- > 250 zoonoses have been described
- Pathogens include viruses, rickettsia, bacteria, fungi, parasites
 - Some rare – e.g. rabies
 - Some common – e.g. *Salmonella*
- Some are very serious (rabies), others are less serious (cat scratch disease)
- Several different means of transmission (direct, indirect, vector-borne)
Zoonoses, direct mechanisms of transmission:

- Direct contact by bite/scratch (e.g. rabies, cat-scratch fever, rat-bite fever)
- Direct contact by handling of animal (e.g. salmonellosis, avian flu, anthrax, tinea corpora)
- Direct infection by ingestion of animal products (e.g. paragonamiasis, Creutzfeldt-Jakob disease, cystercercosis)
Zoonoses, indirect mechanisms of transmission:

- Indirect infection by ingestion in contaminated water or food (e.g. giardiasis, salmonellosis)
- Indirect infection by inhalation of contaminated fluids such as feces, placenta/amniotic fluids, urine, milk, etc. (e.g. brucellosis, Hanta virus, psittacosis)
- Indirect infection by exposure to contaminated soil or water (e.g. schistosomiasis, leptospirosis)
Zoonoses, vector-borne mechanisms of transmission:

- Vector-borne diseases (insect borne):
 - Mosquito-borne infections (arboviruses): Japanese encephalitis, dengue, malaria
 - Tick-borne infections: Lyme disease, ehrlichiosis, rickettsioses, babesiosis
 - Fleas: plague, endemic typhus
 - Flies: onchocerciasis, African trypanosomiasis, leishmaniasis
 - Lice: epidemic typhus
Figure 4.3 Common routes for potential transmission of infectious diseases between animals and humans and vice versa.
Module Outline:

- Different types of zoonoses will be discussed in this module:
 - Rabies: viral, transmitted via bite or scratch
 - Japanese encephalitis: viral, transmitted by mosquito bite
 - Arenavirus: viral, transmitted by aerosolized rodent body fluids
 - *Salmonella*: bacterial, transmitted by contamination of food products or direct contact with animal host
Rabies

Infection from bite or scratch
Rabies epidemiology:

• Develops from a bite, scratch or other contact with saliva from a rabid animal
• Rabies is rare or non-existent in parts of the developed world (US, Western Europe, Australia)
 – Reservoir typically wild animals (e.g. raccoons, skunks, bats)
 – Rates ~3-5 cases per year in the US
 – Compare with 50-100,000 cases per year worldwide
• Rabies is more common in developing countries
 – Reservoir typically domestic animals (e.g. dogs and cats) which aren’t vaccinated
Rabies pathogenesis:

- Rabies is introduced via a bite or other contact into skin and muscle tissue
- The virus then travels through axons of peripheral nerves towards the central nervous system (CNS)
- Upon reaching the CNS, the virus then spreads outwards again along nerve fibers to the skin, cornea, salivary glands, etc.
Rabies clinical symptoms:

- Incubation period ranges from a few days to > 1 year
 - Most cases present between 2 and 16 weeks
- Initial symptoms are nonspecific:
 - Fever, malaise, fatigue, anxiety, headache
 - Half of patients have pain, itching or paresthesias at site of the bite
Rabies clinical symptoms:

• One of two clinical syndromes then develops:
 – Furious (encephalopathic) rabies
 – Dumb (paralytic) rabies
• Mortality is 100% once clinical symptoms appear
Rabies diagnosis:

• Always consider in case of acute onset, rapidly progressive encephalitis
• Diagnosis before death is difficult, but possible
 – Need multiple specimen types and multiple assays
Rabies prevention - Pre-exposure prophylaxis:

• Vaccination can prevent disease when given BEFORE contact
• People at high risk of exposure can undergo a 3-shot vaccination series
• Ex: veterinarians, wilderness occupations, rabies laboratory personal, visitors to endemic countries
Rabies prevention – Post-exposure prophylaxis (PEP)

- Vaccination can prevent disease when given AFTER contact with a rabid animal
 - If animal available for observation, can watch animal for 10 days and hold off on prophylaxis
- ALWAYS wash wound thoroughly with soap and water
- PEP has 2 components – vaccine and immunoglobulin
 - Day 0 - rabies immunoglobulin (RIG)
 - Days 0, 3, 7, 14, and 28 – vaccine
Japanese Encephalitis virus

Infection from insect vector
Japanese Encephalitis (JE):

• One of leading causes of encephalitis world-wide
• Estimated 50,000 cases/year with 15,000 deaths/year
• Found mostly in Asia, now spreading to Australia, India, Pakistan
• Transmitted by mosquito vector from pigs and birds
• Member of the flavivirus family
 – Includes West Nile virus, St. Louis encephalitis virus, Dengue fever virus
JE pathogenesis:

- After transmission by mosquito, virus multiplies locally and in lymph nodes
- Transient viremia with invasion of central nervous system
- Virus targets neuronal cells
JE clinical features:

- Incubation period 1-14 days
- Infection most commonly asymptomatic
 - Estimated asymptomatic:symptomatic infection ratio varies from 25:1 to 1000:1
- Onset of symptomatic disease can be abrupt, acute, subacute or gradual
- Course of symptomatic disease:
 - Prodromal stage
 - Encephalitis stage
 - Late stage with recovery or neurologic sequelae
JE prodromal stage:

- Characterized by flu-like symptoms:
 - High grade fever ± rigors, headache, malaise, nausea, vomiting
 - Nonspecific
JE encephalitis stage:

• Develops by day 3-5 of illness
• Characterized by:
 – Altered sensorium, seizures, neck stiffness, muscle rigidity, mask-like facies, abnormal movements
• Mortality varies from 8-72% but typically averages 25-30%
JE late stage:

- Regain function over several weeks
- ~1/3 recover completely
- Residual sequelae include:
 - Impaired speech, aphasia, paresis
 - Neurocognitive deficits
JE diagnosis:

- Diagnosis based on one of the following:
 - Serologic testing
 - Isolation of virus from tissue, blood, CSF or other fluid
JE management:

- Supportive therapy, no specific antiviral therapy available
- Aggressive management of intracranial pressure, seizures, and fluid balance
JE prevention:

- Vector control (mosquitoes)
- Prevention of mosquito bites
- Separation of animals which carry virus (e.g. pigs) from human habitations
- Human vaccines
Arenaviruses

Infection from inhalation of dried animal secretions or direct contact
Lassa Fever
Arenaviruses classification:

Classified into Old World and New World viruses
Arenaviruses classification:

- **Old World viruses:**
 - Lassa fever virus which causes Lassa fever (Africa)
 - Lymphocytic choriomeningitis virus (LCMV, worldwide)
- **New World viruses (North and South America):**
 - Junin virus (Argentine hemorrhagic fever)
 - Machupo virus (Bolivian hemorrhagic fever)
 - Sabia (Brazilian hemorrhagic fever)
 - Guanarito (Venezuelan hemorrhagic fever)
 - Whitewater Arroyo (found in North America)
Arenavirus distribution:
Arenaviruses epidemiology:

- Most arenaviruses are found in a limited geographic distribution corresponding to the range of the specific reservoir rodent.
- Thought to be transmitted by inhalation of aerosolized animal body fluids (e.g. feces, urine).

The multimammate rat (*Mastomys natalensis*) appears to be the natural reservoir for Lassa virus.
Arenaviruses pathogenesis:

- Virus enters through mucous membranes (respiratory, GI or reproductive tracts) or non-intact skin
- Virus reproduces in reticuloendothelial system, then enters blood stream
- Causes endothelial cell damage, leading to capillary leakage and increased vascular permeability
- Exception: Lymphocytic choriomeningitis virus (LCMV) causes acute CNS disease by a cellular immune response
Arenaviruses clinical features:

• Clinical illness ranges from subclinical infection to shock and death
• Clinical illness generally falls into 2 stages:
 – Prodrome with non-specific signs/symptoms
 – Severe illness, can lead to death
 • CNS disease
 • Hemorrhagic fever
Arenaviruses clinical features:

- Prodrome (may be only symptoms that develop):
 - Typically: fever, headache, malaise, myalgias
 - May include GI symptoms, pharyngitis, cough, joint pain
Lassa fever:

- Photophobia
- Headache
- Fever
- Red Eyes
- Swollen Glands
- Oral Ulcers
- Flushing
- Vomiting
- Numbness/Tingling
- Muscle Aches
- Lassa Fever

Copyright © 2006
Logical Images Inc.
Arenaviruses clinical features:

- Severe illness:
 - Ex: Lymphocytic choriomeningitis virus:
 - 10-20% of patients develop neurological disease, including meningitis, encephalitis
 - Ex: Lassa virus/South American viruses:
 - Cause hemorrhagic fever
 - <10% of patients have severe illness, but case fatality is high (15-25%)
 - Initially retrosternal chest pain, back pain, GI illness, hepatitis
 - Followed by hypovolemic shock
Arenaviruses clinical features:

• Specific features:
 – Lassa virus:
 • Infection in pregnancy linked to abortion, 30% fatality for women infected in 3rd trimester
 • “swollen baby syndrome” = edema, abdominal distention, bleeding, frequently fatal
 • Hearing loss seen in 20% of patients
 – Argentine hemorrhagic fever:
 • Flushing of head/torso, petechiae, ecchymosis, bleeding, neurologic signs
Arenaviruses clinical features:

- Specific features:
 - Venezuelan hemorrhagic fever:
 - Vomiting, abdominal pain, diarrhea, convulsions, hemorrhagic findings
 - Bolivian hemorrhagic fever
 - Similar to Argentine and Venezuelan hemorrhagic fevers
Arenaviruses diagnosis:

- Nonspecific signs and laboratory abnormalities combined WITH a travel history to endemic area
- Contact with rodents is suggestive of arenaviruses
- Requires specific laboratory testing for confirmation
Arenaviruses management:

- Treatment is mainly supportive care
 - Managing electrolyte and fluid balance is key
 - Limit invasive procedures to avoid bleeding
 - Isolation precautions to limit spread
- Mortality varies from 15-30%
Arenaviruses prevention:

• Vaccines available for a few viruses
• Rodent control key to prevention of arenaviruses
 – Reduce rodent habitats near human habitation
 – Limit opportunities for rodents to live with humans
 (reduce available food, trapping, etc.)
Non-typhoidal *Salmonella*

Contact with animal or human feces, contaminated animal derived food products, contaminated water or produce, pets
Salmonella nomenclature:

- *Salmonella* is a gram negative rod
- *Salmonella typhi* and *S. paratyphi* infect only humans and are usually spread by contaminated food or water
 - *S. typhi* is NOT a zoonosis
 - Is the cause of “Typhoid fever”
- Other species of *Salmonella* which infect humans as well as other animals are called “nontyphoidal” *Salmonella*
 - Can be spread by contact with animals or contaminated food or water
- This section will discuss nontyphoidal *Salmonella* only
Salmonella epidemiology:

- Incidence had been rising worldwide, especially in developed countries via poultry production systems
- Rise in antibiotic-resistant *Salmonella* worldwide in the last 5-10 years (ampicillin, ceftriaxone, ciprofloxacin)
- Peak in infection in children <4 years, especially neonates
Salmonella epidemiology:

- Non-typhoidal *Salmonella* can colonize the digestive tracts of many animals (mammals, birds, reptiles, insects) including pets, rodents and farm animals.
- >95% of cases of *Salmonella* infections are food-borne, typically from animal products.
 - Common sources: chickens, eggs; Less common: ground beef, cheese, ice cream.
Salmonella epidemiology:

- 3-5% of cases result from contact with exotic pets (e.g. reptiles, rodents)
 - 90% of reptiles may be asymptomatic carriers
- Non-typhoidal *Salmonella* in human or animal feces can also enter water supplies, contaminating produce (melons, tomatoes, sprouts)
Salmonella pathogenesis:

- Amount of *Salmonella* ingested (dose) directly correlated with duration of incubation and severity of illness
- Once in the small intestine:
 - *Salmonella* multiply within the lumen
 - Penetrate the wall of the intestine
 - Remain in intestinal wall in diarrheal disease, where they release toxins resulting in secretory diarrhea
 - In invasive disease, enters the blood stream (rare)
Salmonella clinical symptoms:

- 3 main syndromes of nontyphoidal Salmonella:
 - Asymptomatic
 - Gastroenteritis
 - Bacteremia (which may lead to metastatic disease)
Salmonella diagnosis:

- Stool culture best means of diagnosis in acute gastroenteritis
- Blood culture most helpful in bacteremia
- Focal sites of infection (abscesses, meningitis, etc.) require culture from that site
- Culture important in invasive disease to determine antimicrobial susceptibility
Salmonella treatment:

- Symptomatic treatment for dehydration should be given in ALL patients
- Acute gastroenteritis in healthy child or adult does NOT require antibiotics
 - Why? Antibiotics can prolong carrier state and longer period of asymptomatic shedding (inhibit growth of normal flora)
Salmonella treatment:

- Patients with risk of invasive disease (neonates and infants <1 year, elderly, immunocompromised) should be treated with antibiotics, guided by susceptibility testing
 - Empiric treatment generally 3rd generation cephalosporin or fluorquinolone but resistance is increasing
- Patients with invasive disease should be treated with antibiotics and drainage/surgery if needed
Salmonella outcome:

- Complete recovery typical in healthy children with *Salmonella* gastroenteritis.
- Bacteremia with systemic involvement or metastatic foci may have a prolonged course.
- Prognosis generally poor for children with *Salmonella* meningitis or endocarditis but is rare in non-typhoidal *Salmonella*.
Salmonella outcome:

- Asymptomatic fecal excretion may occur for several months after clinical resolution of gastroenteritis, especially in young children or those treated with antibiotics
 - May allow transmission to others
- Rarely, a chronic carrier state may develop
 - Defined as asymptomatic excretion of *Salmonella* for >1 yr
Salmonella prevention:

- Related to hygiene:
 - Hand washing to prevent fecal-oral contamination
 - Proper hand washing and cleaning of utensils when handling foods (especially chicken and eggs)
 - Exclusion of infected persons from food preparation or child care
Salmonella prevention continued:

- Related to food items:
 - Fully cook potentially contaminated food items such as chicken and eggs
 - Clean machinery and equipment used to prepare foods
Salmonella prevention continued:

- Related to exotic pets:
 - Reptiles should not be in homes with:
 - Children < 5 years
 - Elderly
 - Immunocompromised people
 - Pregnant women
 - Reptiles should not be kept in child care centers or allowed access to sites of food preparation
 - Hands and other items should be washed well after contact with reptiles
General References

2. Rabies world maps:
http://www.who.int/globalatlas/interactiveMapping/MainFrame2.asp

General References

10. Pitout JDD, Church DL Emerging gram-negative enteric infections Clinics in Laboratory Medicine, 2004;24:605-26
Further reading

- WHO website: http://www.who.int
- US Centers for Disease Control and Prevention: http://www.cdc.gov
Acknowledgements

The Global Health Education Consortium gratefully acknowledges the support provided for developing these teaching modules from:

Margaret Kendrick Blodgett Foundation
The Josiah Macy, Jr. Foundation
Arnold P. Gold Foundation

This work is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.