Effect of a randomized controlled clean stove intervention study on inflammatory biomarkers in pregnant women in Ibadan, Nigeria

Elizabeth Frank
4th Year Biological Sciences major and History, Philosophy, and Social Studies of Science and Medicine major

E Bartlett, D Alexander, A Dutta, D Adu, T Ibigbami, F Edem, G Arinola, T Karrison, CO Olopade
Scope of the HAP problem

- Over 3 Billion people cook with solid fuels and other polluting fuels
- 4 million premature deaths each year are attributable to household air pollution
- Most deaths occur in women and children
- Systemic inflammation is suspected as etiology for cerebrovascular diseases, pneumonia in children, diabetes and COPD
CleanCook stove and bioethanol fuel use will reduce pregnant women’s personal exposures to PM$_{2.5}$ (particulate matter), PAH (polycyclic aromatic hydrocarbon), and CO and reduce adverse pregnancy outcomes.
Important Questions

• Can ethanol stove intervention reduce personal exposure to PM$_{2.5}$, CO and PAH?
• What is the relationship between HAP exposure birth-weight and other pregnancy outcomes?
• Does HAP exposure lead to intrauterine growth restriction, impaired pulmonary function and changes in BP?
• Will participants use and adopt the ethanol stoves?
• Can ethanol stove intervention reduce systemic inflammation?
Objective of biomarker sub-study

• To determine if clean cookstove intervention will reduce serum levels of biomarkers of systemic inflammation and oxidative stress between 2nd and 3rd trimesters of pregnancy.
Pathway

HAP/Ambient PM

Pulmonary Reflexes

Autonomic Nervous System

Automaticity Conduction Repolarization

Heart Rate Rhythm

Arrhythmia

Pulmonary Inflammation

Oxidative Stress

Endothelial Dysfunction

Leukocyte/Platelet Activation

Atherosclerosis Progression And Plaque Instability

Plaque Rupture

Thrombosis

Acute Phase Response/Activation of Coagulation

Direct effect on the Heart

Myocardial Infarction
A randomized controlled stove intervention and pregnancy outcome

Randomized Controlled Intervention Trial

324

162 CleanCook stove/ethanol

162 Kerosene (104) or Firewood (58)

Exclusion

• Smoker in home
• Cooking profession
• HIV infection
• Diabetes
• High risk pregnancy

Last delivery end of October 2015
The CleanCook Tier 4 Stove*
Biomarker Determination

- Serum biomarkers determined by ELISA in 2nd and 3rd Trimesters of pregnancy

- Pro-inflammatory markers
 - IL-6
 - IL-8
 - TNF-\alpha

- Oxidative stress marker
 - Malondialdehyde (MDA)
Exposure and cookstove monitoring

- 72 hour exposure monitoring for PM2.5 was performed during 2nd and 3rd trimesters of pregnancy
- SUMs placed on all stoves in study homes
- SUMs recorded temperature every 10 minutes

*SUMs = Stove Use Monitors
SUMs monitoring confirms use and absence of stove stacking
Biomarker levels similar between Ethanol users and Controls

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Ethanol Intervention</th>
<th>Control (Firewood OR Kerosene)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean Change</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>116</td>
<td>0.46</td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>112</td>
<td>16.2</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>114</td>
<td>3.43</td>
</tr>
<tr>
<td>MDA (pmol/ml)</td>
<td>118</td>
<td>-19.7</td>
</tr>
</tbody>
</table>
Change from Kerosene to ethanol did not reduce inflammation

<table>
<thead>
<tr>
<th>Ethanol (From Kerosene)</th>
<th>Control (Kerosene)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Change</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>1.42</td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>35.5</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>8.25</td>
</tr>
<tr>
<td>MDA (pmol/ml)</td>
<td>-20.3</td>
</tr>
</tbody>
</table>
Transition from firewood to ethanol stove reduced TNF-α levels

<table>
<thead>
<tr>
<th></th>
<th>Ethanol (From Firewood)</th>
<th>Control (Firewood)</th>
<th>n</th>
<th>Mean Change</th>
<th>SE</th>
<th>n</th>
<th>Mean Change</th>
<th>SE</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (pg/ml)</td>
<td>38</td>
<td>-1.51</td>
<td>1.73</td>
<td>34</td>
<td>2.03</td>
<td>2.51</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>37</td>
<td>-23.1</td>
<td>15.2</td>
<td>35</td>
<td>-25.7</td>
<td>6.1</td>
<td>0.090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>38</td>
<td>-6.20</td>
<td>5.24</td>
<td>35</td>
<td>14.03</td>
<td>5.89</td>
<td>0.011*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA (pmol/ml)</td>
<td>38</td>
<td>-18.4</td>
<td>5.0</td>
<td>35</td>
<td>-10.0</td>
<td>6.2</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biomarker levels as a function of PM2.5 levels

- RBP
- IL-6
- IL-8
- TNF-α
- MDA

Rainy Season
Dry Season
Biomarker levels as a function of Minutes above 100μg/m³

- Log RBP
- Log IL-6
- Log IL-8
- Log TNF-α
- Log MDA

Rainy Season

Dry Season
Biomarker levels as a function of PM2.5 levels: TNF-α

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Slope estimate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log RBP</td>
<td>0.0090</td>
<td>0.811</td>
</tr>
<tr>
<td>Log IL-6</td>
<td>0.0293</td>
<td>0.768</td>
</tr>
<tr>
<td>Log IL-8</td>
<td>0.2363</td>
<td>0.028*</td>
</tr>
<tr>
<td>Log TNF-α</td>
<td>0.1863</td>
<td>0.022*</td>
</tr>
<tr>
<td>Log MDA</td>
<td>-0.0686</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Biomarker levels as a function of PM2.5 levels: IL-8

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Slope Estimate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log RBP</td>
<td>0.0090</td>
<td>0.811</td>
</tr>
<tr>
<td>Log IL-6</td>
<td>0.0293</td>
<td>0.768</td>
</tr>
<tr>
<td>Log IL-8</td>
<td>0.2363</td>
<td>0.028*</td>
</tr>
<tr>
<td>Log TNF-α</td>
<td>0.1863</td>
<td>0.022*</td>
</tr>
<tr>
<td>Log MDA</td>
<td>-0.0686</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Conclusions

• Shifting to cleaner fuel and improved stoves reduces TNF-α during pregnancy
• There is linear correlation between PM2.5 and serum levels of TNF-α and IL-6
• There was wide adoption of the CleanCook stove
• CleanCook stove with ethanol as fuel resulted in lower exposure to PM2.5
• Sustained use and reduction in HAP may lead to reduction in systematic inflammation and thromboembolic risks
Limitations

• Relatively small sample size especially in the baseline firewood subgroup

• Inability to control for the effect of ambient air pollution and automobile-related pollution is an important confounder

• Lack of nutritional marker data to determine level of anti-oxidant defense
Appendix 1: Stove and Fuel Type

Control

- Kerosene Stove
- Firewood stove (Three-Stone)

Intervention

- Ethanol-fueled Stove Intervention
Appendix 2: Study Design

324 Pregnant Women

Randomized at 16-18 weeks

162 Control
- Firewood (n=58)
- Kerosene (n=104)

162 Intervention
- Firewood (n=51)
- Kerosene (n=111)

Kerosene

Firewood (three-stone)

Ethanol (CleanCook)
Appendix 3A: Participants

Inclusion Criteria:

- Apparently healthy women
- Non-smokers and non-chewers of tobacco
- Cooked regularly with firewood or kerosene
- Less than 18 weeks gestational age (determined by self-reported first day of last menstrual period (LMP) and/or ultrasound biometry

324 Pregnant Women

162 Control
- Firewood (n=58)
- Kerosene (n=104)

162 Intervention
- Firewood (n=51)
- Kerosene (n=111)
Appendix 3B: Participants

Exclusion Criteria:

- Smoker
- Lived with a smoker
- Cooked for a living
- HIV positive
- High-risk pregnancy (multiple gestations)
- Uncontrolled material hypertension
- Maternal age greater than 35 for first delivery
- Three or more prior miscarriages
- Prior C-section

324 Pregnant Women

162 Control
- Firewood (n=58)
- Kerosene (n=104)

162 Intervention
- Firewood (n=51)
- Kerosene (n=111)
Appendix 4: Clinic

8 Clinic Visits

Measurements:
• Ultrasound- intrauterine growth rate
• Birth weight and length
• Blood Draw for Biomarker analysis
• Blood Pressure
• **Spirometry** assesses lung function by measuring the amount of air that can be maximally inhaled and exhaled
Appendix 5: Characteristics of PM

<table>
<thead>
<tr>
<th></th>
<th>Düsseldorf PM</th>
<th>Washington DC PM</th>
<th>ROFA</th>
<th>Mt St Helen’s dust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>19.7</td>
<td>17.7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ash</td>
<td>63.2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cobalt</td>
<td>103</td>
<td>16.4</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Copper</td>
<td>48</td>
<td>223</td>
<td>107</td>
<td>164</td>
</tr>
<tr>
<td>Chromium</td>
<td>104</td>
<td>211</td>
<td>53</td>
<td>N/A</td>
</tr>
<tr>
<td>Iron</td>
<td>14,521</td>
<td>2,980</td>
<td>1,254</td>
<td>376</td>
</tr>
<tr>
<td>Manganese</td>
<td>21</td>
<td>237</td>
<td>26</td>
<td>7600</td>
</tr>
<tr>
<td>Nickel</td>
<td>1519</td>
<td>166</td>
<td>2261</td>
<td>N/A</td>
</tr>
<tr>
<td>Titanium</td>
<td>131</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vanadium</td>
<td>2767</td>
<td>345</td>
<td>2611</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Appendix 6A: Pathway

HAP/Ambient PM

- Pulmonary Inflammation
 - Oxidative Stress
 - Endothelial Dysfunction
 - Leukocyte/Platelet Activation
 - Acute Phase Response/Activation of Coagulation

- Atherosclerosis Progression And Plaque Instability
- Plaque Rupture
- Thrombosis

Direct effect on the Heart

Myocardial Infarction

- Heart Rate Rhythm

Arrhythmia

- Automaticity Conduction Repolarization

Autonomic Nervous System

Pulmonary Reflexes
Appendix 6B: Pathway